7/31/2022»»Sunday

Qt Signal Slot Passing Array

7/31/2022
    44 - Comments
Slot

This is the sequel of my previous article explaining the implementation details of the signals and slots.In the Part 1, we have seenthe general principle and how it works with the old syntax.In this blog post, we will see the implementation details behind thenew function pointerbased syntax in Qt5.

When the limit has been reached you will get a message which Qt Signal Slot Passing Arguments informs you that your loss limit has been reached and you will not be able to place any further bets. You will Qt Signal Slot Passing Arguments be able to review these settings should your occupation and amount change. Qt::AutoConnection: If the receiver lives in the thread that emits the signal, Qt::DirectConnection is used. Otherwise, Qt::QueuedConnection is used. The connection type is determined when the signal is emitted. Qt::DirectConnection: This slot is invoked immediately when the signal is emitted. The slot is executed in the signaling thread.

New Syntax in Qt5

The new syntax looks like this:

Why the new syntax?

I already explained the advantages of the new syntax in adedicated blog entry.To summarize, the new syntax allows compile-time checking of the signals and slots. It also allowsautomatic conversion of the arguments if they do not have the same types.As a bonus, it enables the support for lambda expressions.

New overloads

There was only a few changes required to make that possible.
The main idea is to have new overloads to QObject::connect which take the pointersto functions as arguments instead of char*

There are three new static overloads of QObject::connect: (not actual code)

The first one is the one that is much closer to the old syntax: you connect a signal from the senderto a slot in a receiver object.The two other overloads are connecting a signal to a static function or a functor object withouta receiver.

They are very similar and we will only analyze the first one in this article.

Pointer to Member Functions

Before continuing my explanation, I would like to open a parenthesis totalk a bit about pointers to member functions.

Here is a simple sample code that declares a pointer to member function and calls it.

Pointers to member and pointers to member functions are usually part of the subset of C++ that is not much used and thus lesser known.
The good news is that you still do not really need to know much about them to use Qt and its new syntax. All you need to remember is to put the & before the name of the signal in your connect call. But you will not need to cope with the ::*, .* or ->* cryptic operators.

These cryptic operators allow you to declare a pointer to a member or access it.The type of such pointers includes the return type, the class which owns the member, the types of each argumentand the const-ness of the function.

You cannot really convert pointer to member functions to anything and in particular not tovoid* because they have a different sizeof.
If the function varies slightly in signature, you cannot convert from one to the other.For example, even converting from void (MyClass::*)(int) const tovoid (MyClass::*)(int) is not allowed.(You could do it with reinterpret_cast; but that would be an undefined behaviour if you callthem, according to the standard)

Pointer to member functions are not just like normal function pointers.A normal function pointer is just a normal pointer the address where thecode of that function lies.But pointer to member function need to store more information:member functions can be virtual and there is also an offset to apply to thehidden this in case of multiple inheritance.
sizeof of a pointer to a member function can evenvary depending of the class.This is why we need to take special care when manipulating them.

Type Traits: QtPrivate::FunctionPointer

Let me introduce you to the QtPrivate::FunctionPointer type trait.
A trait is basically a helper class that gives meta data about a given type.Another example of trait in Qt isQTypeInfo.

What we will need to know in order to implement the new syntax is information about a function pointer.

The template<typename T> struct FunctionPointer will give us informationabout T via its member.

  • ArgumentCount: An integer representing the number of arguments of the function.
  • Object: Exists only for pointer to member function. It is a typedef to the class of which the function is a member.
  • Arguments: Represents the list of argument. It is a typedef to a meta-programming list.
  • call(T &function, QObject *receiver, void **args): A static function that will call the function, applying the given parameters.

Qt still supports C++98 compiler which means we unfortunately cannot require support for variadic templates.Therefore we had to specialize our trait function for each number of arguments.We have four kinds of specializationd: normal function pointer, pointer to member function,pointer to const member function and functors.For each kind, we need to specialize for each number of arguments. We support up to six arguments.We also made a specialization using variadic templateso we support arbitrary number of arguments if the compiler supports variadic templates.

The implementation of FunctionPointer lies inqobjectdefs_impl.h.

QObject::connect

The implementation relies on a lot of template code. I am not going to explain all of it.

Here is the code of the first new overload fromqobject.h:

You notice in the function signature that sender and receiverare not just QObject* as the documentation points out. They are pointers totypename FunctionPointer::Object instead.This uses SFINAEto make this overload only enabled for pointers to member functionsbecause the Object only exists in FunctionPointer ifthe type is a pointer to member function.

We then start with a bunch ofQ_STATIC_ASSERT.They should generate sensible compilation error messages when the user made a mistake.If the user did something wrong, it is important that he/she sees an error hereand not in the soup of template code in the _impl.h files.We want to hide the underlying implementation from the user who should not needto care about it.
That means that if you ever you see a confusing error in the implementation details,it should be considered as a bug that should be reported.

We then allocate a QSlotObject that is going to be passed to connectImpl().The QSlotObject is a wrapper around the slot that will help calling it. It alsoknows the type of the signal arguments so it can do the proper type conversion.
We use List_Left to only pass the same number as argument as the slot, which allows connectinga signal with many arguments to a slot with less arguments.

QObject::connectImpl is the private internal functionthat will perform the connection.It is similar to the original syntax, the difference is that instead of storing amethod index in the QObjectPrivate::Connection structure,we store a pointer to the QSlotObjectBase.

The reason why we pass &slot as a void** is only tobe able to compare it if the type is Qt::UniqueConnection.

We also pass the &signal as a void**.It is a pointer to the member function pointer. (Yes, a pointer to the pointer)

Signal Index

We need to make a relationship between the signal pointer and the signal index.
We use MOC for that. Yes, that means this new syntaxis still using the MOC and that there are no plans to get rid of it :-).

MOC will generate code in qt_static_metacallthat compares the parameter and returns the right index.connectImpl will call the qt_static_metacall function with thepointer to the function pointer.

Once we have the signal index, we can proceed like in the other syntax.

The QSlotObjectBase

QSlotObjectBase is the object passed to connectImplthat represents the slot.

Before showing the real code, this is what QObject::QSlotObjectBasewas in Qt5 alpha:

It is basically an interface that is meant to be re-implemented bytemplate classes implementing the call and comparison of thefunction pointers.

It is re-implemented by one of the QSlotObject, QStaticSlotObject orQFunctorSlotObject template class.

Fake Virtual Table

The problem with that is that each instantiation of those object would need to create a virtual table which contains not only pointer to virtual functionsbut also lot of information we do not need such asRTTI.That would result in lot of superfluous data and relocation in the binaries.

In order to avoid that, QSlotObjectBase was changed not to be a C++ polymorphic class.Virtual functions are emulated by hand.

The m_impl is a (normal) function pointer which performsthe three operations that were previously virtual functions. The 're-implementations'set it to their own implementation in the constructor.

Please do not go in your code and replace all your virtual functions by such ahack because you read here it was good.This is only done in this case because almost every call to connectwould generate a new different type (since the QSlotObject has template parameterswich depend on signature of the signal and the slot).

Qt Signal Slot Passing Arrays

Protected, Public, or Private Signals.

Passing

Signals were protected in Qt4 and before. It was a design choice as signals should be emittedby the object when its change its state. They should not be emitted fromoutside the object and calling a signal on another object is almost always a bad idea.

However, with the new syntax, you need to be able take the addressof the signal from the point you make the connection.The compiler would only let you do that if you have access to that signal.Writing &Counter::valueChanged would generate a compiler errorif the signal was not public.

In Qt 5 we had to change signals from protected to public.This is unfortunate since this mean anyone can emit the signals.We found no way around it. We tried a trick with the emit keyword. We tried returning a special value.But nothing worked.I believe that the advantages of the new syntax overcome the problem that signals are now public.

Sometimes it is even desirable to have the signal private. This is the case for example inQAbstractItemModel, where otherwise, developers tend to emit signalfrom the derived class which is not what the API wants.There used to be a pre-processor trick that made signals privatebut it broke the new connection syntax.
A new hack has been introduced.QPrivateSignal is a dummy (empty) struct declared private in the Q_OBJECTmacro. It can be used as the last parameter of the signal. Because it is private, only the objecthas the right to construct it for calling the signal.MOC will ignore the QPrivateSignal last argument while generating signature information.See qabstractitemmodel.h for an example.

More Template Code

The rest of the code is inqobjectdefs_impl.h andqobject_impl.h.It is mostly standard dull template code.

I will not go into much more details in this article,but I will just go over few items that are worth mentioning.

Qt Signal Slot Passing Array

Meta-Programming List

As pointed out earlier, FunctionPointer::Arguments is a listof the arguments. The code needs to operate on that list:iterate over each element, take only a part of it or select a given item.

That is why there isQtPrivate::List that can represent a list of types. Some helpers to operate on it areQtPrivate::List_Select andQtPrivate::List_Left, which give the N-th element in the list and a sub-list containingthe N first elements.

The implementation of List is different for compilers that support variadic templates and compilers that do not.

With variadic templates, it is atemplate<typename... T> struct List;. The list of arguments is just encapsulatedin the template parameters.
For example: the type of a list containing the arguments (int, QString, QObject*) would simply be:

Without variadic template, it is a LISP-style list: template<typename Head, typename Tail > struct List;where Tail can be either another List or void for the end of the list.
The same example as before would be:

ApplyReturnValue Trick

Qt signal slot passing array calculator

In the function FunctionPointer::call, the args[0] is meant to receive the return value of the slot.If the signal returns a value, it is a pointer to an object of the return type ofthe signal, else, it is 0.If the slot returns a value, we need to copy it in arg[0]. If it returns void, we do nothing.

The problem is that it is not syntaxically correct to use thereturn value of a function that returns void.Should I have duplicated the already huge amount of code duplication: once for the voidreturn type and the other for the non-void?No, thanks to the comma operator.

In C++ you can do something like that:

You could have replaced the comma by a semicolon and everything would have been fine.

Where it becomes interesting is when you call it with something that is not void:

There, the comma will actually call an operator that you even can overload.It is what we do inqobjectdefs_impl.h

ApplyReturnValue is just a wrapper around a void*. Then it can be usedin each helper. This is for example the case of a functor without arguments:

This code is inlined, so it will not cost anything at run-time.

Conclusion

This is it for this blog post. There is still a lot to talk about(I have not even mentioned QueuedConnection or thread safety yet), but I hope you found thisinterresting and that you learned here something that might help you as a programmer.

Update:The part 3 is available.

How often is a an object copied, if it is emitted by a signal as a const reference and received by a slot as a const reference? How does the behaviour differ for direct and queued signal-slot connections? What changes if we emit the object by value or receive it by value?
Nearly every customer asks this question at some point in a project. The Qt documentation doesn’t say a word about it. There is a good discussion on stackoverflow, which unfortunately leaves it to the reader to pick the right answer from all the answers and comments. So, let’s have a systematic and detailed look at how arguments are passed to signals and slots.

Setting the Stage

For our experiments, we need a copyable class that we will pass by const reference or by value to signals and slots. The class – let’s call it Copy – looks as follows.

The copy constructor and the assignment operator simply perform a member-wise copy – like the compiler generated versions would do. We implement them explicitly to set breakpoints or to print debugging messages. The default constructor is only required for queued connections. We’ll learn the reason later.
We need another class, MainView, which ultimately derives from QObject. MainView provides the following signals and slots.

MainView provides four signal-slot connections for each connection type.

The above code is used for direct connections. For queued connections, we comment out the first line and uncomment the second and third line.
The code for emitting the signals looks as follows:

Qt Signal Slot Passing Array Function

Direct Connections

sendConstRef => receiveConstRef

We best set breakpoints in the copy constructor and assignment operator of the Copy class. If our program only calls emit sendConstRef(c), the breakpoints are not hit at all. So, no copies happen. Why?
The result is not really surprising, because this is exactly how passing arguments as const references in C++ works and because a direct signal-slot connection is nothing else but a chain of synchronous or direct C++ function calls.
Nevertheless, it is instructive to look at the chain of function calls executed when the sendConstRef signal is emitted.

The meta-object code of steps 2, 3 and 4 – for marshalling the arguments of a signal, routing the emitted signal to the connected slots and de-marshalling the arguments for the slot, respectively – is written in such a way that no copying of the arguments occurs. This leaves us with two places, where copying of a Copy object could potentially occur: when passing the Copy object to the functions MainView::sendConstRef or MainView::receiveConstRef.
These two places are governed by standard C++ behaviour. Copying is not needed, because both functions take their arguments as const references. There are also no life-time issues for the Copy object, because receiveConstRef returns before the Copy object goes out of scope at the end of sendConstRef.

sendConstRef => receiveValue

Based on the detailed analysis in the last section, we can easily figure out that only one copy is needed in this scenario. When qt_static_meta_call calls receiveValue(Copy c) in step 4, the original Copy object is passed by value and hence must be copied.

sendValue => receiveConstRef

One copy happens, when the Copy object is passed by value to sendValue by value.

sendValue => receiveValue

This is the worst case. Two copies happen, one when the Copy object is passed to sendValue by value and another one when the Copy object is passed to receiveValue by value.

Queued Connections

A queued signal-slot connection is nothing else but an asynchronous function call. Conceptually, the routing function QMetaObject::activate does not call the slot directly any more, but creates a command object from the slot and its arguments and inserts this command object into the event queue. When it is the command object’s turn, the dispatcher of the event loop will remove the command object from the queue and execute it by calling the slot.
When QMetaObject::activate creates the command object, it stores a copy of the Copy object in the command object. Therefore, we have one extra copy for every signal-slot combination.
We must register the Copy class with Qt’s meta-object system with the command qRegisterMetaType('Copy'); in order to make the routing of QMetaObject::activate work. Any meta type is required to have a public default constructor, copy constructor and destructor. That’s why Copy has a default constructor.
Queued connections do not only work for situations where the sender of the signal and the receiver of the signal are in the same thread, but also when the sender and receiver are in different threads. Even in a multi-threaded scenario, we should pass arguments to signals and slots by const reference to avoid unnecessary copying of the arguments. Qt makes sure that the arguments are copied before they cross any thread boundaries.

Qt Signal Slot Passing Array C++

Conclusion

The following table summarises our results. The first line, for example, reads as follows: If the program passes the argument by const reference to the signal and also by const reference to the slot, there are no copies for a direct connection and one copy for a queued connection.

SignalSlotDirectQueued
const Copy&const Copy&01
const Copy&Copy12
Copyconst Copy&12
CopyCopy23

The conclusion from the above results is that we should pass arguments to signals and slots by const reference and not by value. This advice is true for both direct and queued connections. Even if the sender of the signal and the receiver of the slot are in different threads, we should still pass arguments by const reference. Qt takes care of copying the arguments, before they cross the thread boundaries – and everything is fine.
By the way, it doesn’t matter whether we specify the argument in a connect call as const Copy& or Copy. Qt normalises the type to Copy any way. This normalisation does not imply, however, that arguments of signals and slots are always copied – no matter whether they are passed by const reference or by value.